CS 506: Data Science Tools
Graduate course, Boston University, Computer Science Department, 2017
Lectures
Lecture 4 - Distance Functions | Slides
Lecture 5 - k-means clustering
Lecture 9 - Other clustering algorithms | [Hierarchical-Slides] (https://github.com/dataminingapp/dataminingapp-lectures/blob/master/Lecture-9/hierarchical.pdf?raw=true) | [Density-slides] (https://github.com/dataminingapp/dataminingapp-lectures/blob/master/Lecture-9/density-based-clustering.pdf?raw=true)
Lecture 10 - Web scraping slides
Lecture 11 - Classification | [Slides] (https://github.com/dataminingapp/dataminingapp-lectures/blob/master/Lecture-11/evaluation.pdf?raw=true)
Lecture 12 - Linear Regression
Lecture 13 - Logistic Regression
Lecture 14 - SVM-Boosting | [Slides] (https://github.com/dataminingapp/dataminingapp-lectures/blob/master/Lecture-14/svm-boosting.pdf?raw=true)
Lecture 15 - Text Analysis and Topic Modeling
Lecture 16 - Introduction to graph analysis
Lecture 17 - Introduction to graph analysis
Lecture 18 - Node Centralities | [Centrality-slides] (https://github.com/dataminingapp/dataminingapp-lectures/blob/master/Lecture-18/Centrality-Measures.pdf?raw=true)
Lecture 19 - Network Visualization
Lecture 20 - Community detection | [Cuts-slides] (https://github.com/dataminingapp/dataminingapp-lectures/blob/master/Lecture-20/cuts.pdf?raw=t
rue)