

Sanaz Bahargam Boston University

Outlier Detection

Evimaria Terzi Boston University

A Big Perspective

We consider the problem of finding the outliers and partitioning the data to some groups, given the desired partition representative and we are allowed to remove a predefined number of outliers.

l-Removal

Given $X = \{x_1, x_2, ..., x_n\}$ and a vector τ , find ℓ point such that $\| \operatorname{mean}(X \setminus X_{\ell}), \tau \|$ is minimized.

ℓ-Removal problem is NP-hard and NP-hard to approximate
Set Partitioning Problem < ℓ-Removal</p>

Solving \ell-Removal

Integer Regression: Find a 0-1 vector S such that $||mean(X * S), \tau||$ is minimized, and S contains at least $n - \ell 1s$

$$\begin{bmatrix} 5 & 7 & 3 & 4 & 6 & 3 \\ 9 & 8 & 6 & 4 & 7 & 5 \\ 4 & 3 & 4 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 & 1 & 1 \end{bmatrix} \quad \begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \end{bmatrix} = Xs \qquad S_i \in \{0, 1\}$$

Step 1: Find a nonnegative real-valued vector S minimizing cost function

```
cvx_begin variable s(n) nonnegative minimize ( norm(data * s - mu , 2)) subject to sum(s) >= 1 for i=1:n s(i) <= 1 / (n - \ell) end cvx_end
```

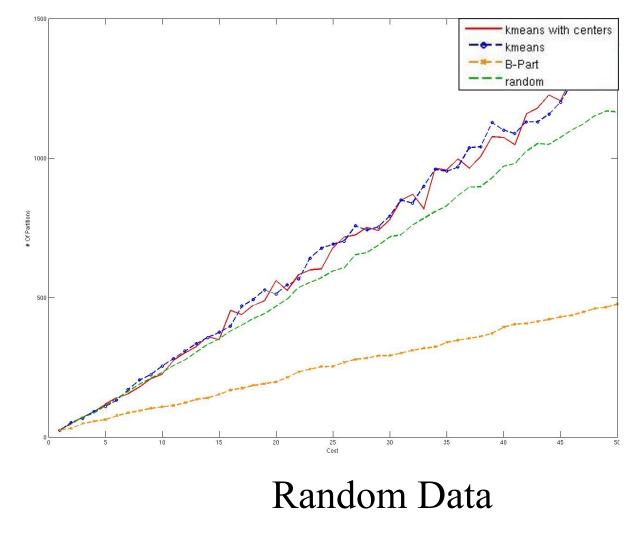
Step 2: Transform S into an integer value vector which contains at least n - ℓ 1s

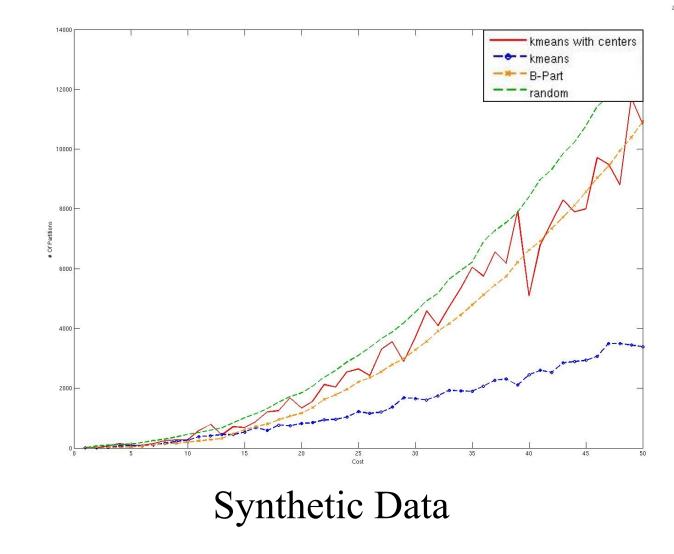
Target Partitioning

Given $X = \{x_1, x_2, ..., x_n\}$ and vectors $\tau_1, \tau_2, ..., \tau_k$ partition X into k partitions such that $\Sigma \parallel \mu(Ci) - \tau_i \parallel_{(i=1..k)}$ is minimized.

Target Partitioning Problem is NP-hard and NP-hard to approximate

Solving Target Partitioning


K-means


- ➤ Cluster points using K-means clustering to get cluster centers
- Find the matching between cluster centers and targets (min-weight perfect matching)

Benefit Partition

Assign each point to the partition which benefits the most from adding that point.

K-means with	K-means	Benefit	Random
Targets		Partitioning	partitioning
42422	30168	29187	35355

Intel Dataset

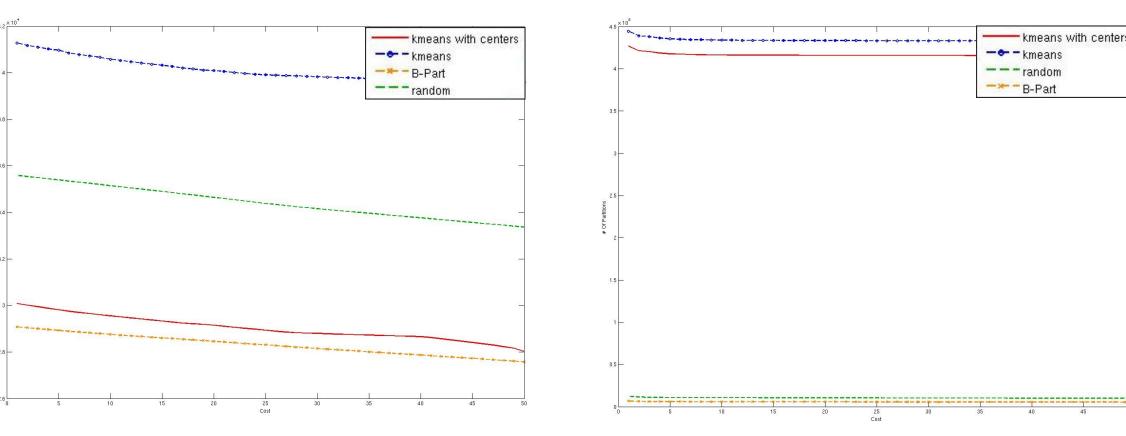
K-means with	K-means	Benefit	Random
Targets		Partitioning	partitioning
4310291	4453967	95182	126192

PLOS Dataset

Target-l Partitioning

Given $X = \{x_1, x_2, ..., x_n\}$ and vectors $\tau_1, \tau_2, ..., \tau_k$ and ℓ , partition $X \setminus X_{\ell}$ into k groups such that $\Sigma \parallel \mu(Ci) - \tau_i \parallel_{(i=1..k)}$ is minimized.

Target-\(\ell\) Partitioning Problem is NP-hard and NP-hard to approximate


Solving Target-\(\ell\) Partitioning

Step 1: Partition the points into k groups, using the algorithm for target partitioning algorithm.

Step2: For each partitions find $i=1... \ell$ points to remove from, using algorithm for ℓ -removal problem.

Step3: Remove ℓ points:

$$D(i, j) = \max \{ D(i - 1, j - q) + d(i, q) \}$$
 $0 \le q \le j$

Intel Dataset

PLOS Dataset

Detected Outliers in PLOS:

"AID Enzymatic Activity Is Inversely Proportional to the Size of

Cytosine C5 Orbital Cloud"

Twitted: 0 AVG: 38.55
HTML Page downloaded: 1583 AVG: 1734.49
PDF Downloaded: 262 AVG: 350.81
XML Downloaded: 150 AVG: 187.95

"Performance of the PointCare NOW System for CD4 Counting in HIV Patients Based on Five Independent Evaluations"

Twitted: 23 AVG: 38.55
HTML Page downloaded: 704 AVG: 1734.49
PDF Downloaded: 71 AVG: 350.81
XML Downloaded: 9 AVG: 187.95

Reference

Selecting a Set of Characteristic Reviews, T. Lappas, M. Crovella, E. Terzi. ACM SIGKDD 2012